Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: implications for redox systems biology.

Identifieur interne : 000502 ( Main/Exploration ); précédent : 000501; suivant : 000503

The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: implications for redox systems biology.

Auteurs : Lefentse N. Mashamaite [Afrique du Sud] ; Johann M. Rohwer [Afrique du Sud] ; Ché S. Pillay [Afrique du Sud]

Source :

RBID : pubmed:25514238

Descripteurs français

English descriptors

Abstract

Glutathionylation plays a central role in cellular redox regulation and anti-oxidative defence. Grx (Glutaredoxins) are primarily responsible for reversing glutathionylation and their activity therefore affects a range of cellular processes, making them prime candidates for computational systems biology studies. However, two distinct kinetic mechanisms involving either one (monothiol) or both (dithiol) active-site cysteines have been proposed for their deglutathionylation activity and initial studies predicted that computational models based on either of these mechanisms will have different structural and kinetic properties. Further, a number of other discrepancies including the relative activity of active-site mutants and contrasting reciprocal plot kinetics have also been reported for these redoxins. Using kinetic modelling, we show that the dithiol and monothiol mechanisms are identical and, we were also able to explain much of the discrepant data found within the literature on Grx activity and kinetics. Moreover, our results have revealed how an apparently futile side-reaction in the monothiol mechanism may play a significant role in regulating Grx activity in vivo.

DOI: 10.1042/BSR20140157
PubMed: 25514238
PubMed Central: PMC4340274


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: implications for redox systems biology.</title>
<author>
<name sortKey="Mashamaite, Lefentse N" sort="Mashamaite, Lefentse N" uniqKey="Mashamaite L" first="Lefentse N" last="Mashamaite">Lefentse N. Mashamaite</name>
<affiliation wicri:level="1">
<nlm:affiliation>*School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, 3201, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>*School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, 3201</wicri:regionArea>
<wicri:noRegion>3201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rohwer, Johann M" sort="Rohwer, Johann M" uniqKey="Rohwer J" first="Johann M" last="Rohwer">Johann M. Rohwer</name>
<affiliation wicri:level="1">
<nlm:affiliation>†Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>†Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch</wicri:regionArea>
<wicri:noRegion>7602 Stellenbosch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pillay, Che S" sort="Pillay, Che S" uniqKey="Pillay C" first="Ché S" last="Pillay">Ché S. Pillay</name>
<affiliation wicri:level="1">
<nlm:affiliation>*School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, 3201, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>*School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, 3201</wicri:regionArea>
<wicri:noRegion>3201</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25514238</idno>
<idno type="pmid">25514238</idno>
<idno type="doi">10.1042/BSR20140157</idno>
<idno type="pmc">PMC4340274</idno>
<idno type="wicri:Area/Main/Corpus">000569</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000569</idno>
<idno type="wicri:Area/Main/Curation">000569</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000569</idno>
<idno type="wicri:Area/Main/Exploration">000569</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: implications for redox systems biology.</title>
<author>
<name sortKey="Mashamaite, Lefentse N" sort="Mashamaite, Lefentse N" uniqKey="Mashamaite L" first="Lefentse N" last="Mashamaite">Lefentse N. Mashamaite</name>
<affiliation wicri:level="1">
<nlm:affiliation>*School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, 3201, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>*School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, 3201</wicri:regionArea>
<wicri:noRegion>3201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rohwer, Johann M" sort="Rohwer, Johann M" uniqKey="Rohwer J" first="Johann M" last="Rohwer">Johann M. Rohwer</name>
<affiliation wicri:level="1">
<nlm:affiliation>†Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>†Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch</wicri:regionArea>
<wicri:noRegion>7602 Stellenbosch</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pillay, Che S" sort="Pillay, Che S" uniqKey="Pillay C" first="Ché S" last="Pillay">Ché S. Pillay</name>
<affiliation wicri:level="1">
<nlm:affiliation>*School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, 3201, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>*School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, 3201</wicri:regionArea>
<wicri:noRegion>3201</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Bioscience reports</title>
<idno type="eISSN">1573-4935</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glutaredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
<term>Systems Biology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biologie des systèmes (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Thiols (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Kinetics</term>
<term>Models, Biological</term>
<term>Oxidation-Reduction</term>
<term>Systems Biology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biologie des systèmes</term>
<term>Cinétique</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathionylation plays a central role in cellular redox regulation and anti-oxidative defence. Grx (Glutaredoxins) are primarily responsible for reversing glutathionylation and their activity therefore affects a range of cellular processes, making them prime candidates for computational systems biology studies. However, two distinct kinetic mechanisms involving either one (monothiol) or both (dithiol) active-site cysteines have been proposed for their deglutathionylation activity and initial studies predicted that computational models based on either of these mechanisms will have different structural and kinetic properties. Further, a number of other discrepancies including the relative activity of active-site mutants and contrasting reciprocal plot kinetics have also been reported for these redoxins. Using kinetic modelling, we show that the dithiol and monothiol mechanisms are identical and, we were also able to explain much of the discrepant data found within the literature on Grx activity and kinetics. Moreover, our results have revealed how an apparently futile side-reaction in the monothiol mechanism may play a significant role in regulating Grx activity in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25514238</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-4935</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>35</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Bioscience reports</Title>
<ISOAbbreviation>Biosci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: implications for redox systems biology.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1042/BSR20140157</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e00173</ELocationID>
<Abstract>
<AbstractText>Glutathionylation plays a central role in cellular redox regulation and anti-oxidative defence. Grx (Glutaredoxins) are primarily responsible for reversing glutathionylation and their activity therefore affects a range of cellular processes, making them prime candidates for computational systems biology studies. However, two distinct kinetic mechanisms involving either one (monothiol) or both (dithiol) active-site cysteines have been proposed for their deglutathionylation activity and initial studies predicted that computational models based on either of these mechanisms will have different structural and kinetic properties. Further, a number of other discrepancies including the relative activity of active-site mutants and contrasting reciprocal plot kinetics have also been reported for these redoxins. Using kinetic modelling, we show that the dithiol and monothiol mechanisms are identical and, we were also able to explain much of the discrepant data found within the literature on Grx activity and kinetics. Moreover, our results have revealed how an apparently futile side-reaction in the monothiol mechanism may play a significant role in regulating Grx activity in vivo.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mashamaite</LastName>
<ForeName>Lefentse N</ForeName>
<Initials>LN</Initials>
<AffiliationInfo>
<Affiliation>*School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, 3201, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rohwer</LastName>
<ForeName>Johann M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>†Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pillay</LastName>
<ForeName>Ché S</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>*School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg, 3201, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biosci Rep</MedlineTA>
<NlmUniqueID>8102797</NlmUniqueID>
<ISSNLinking>0144-8463</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049490" MajorTopicYN="N">Systems Biology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25514238</ArticleId>
<ArticleId IdType="pii">BSR20140157</ArticleId>
<ArticleId IdType="doi">10.1042/BSR20140157</ArticleId>
<ArticleId IdType="pmc">PMC4340274</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO Rep. 2003 Feb;4(2):184-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Mar 15;24(6):880-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Sep 10;30(36):8883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1888746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Sep 29;31(38):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1390715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18694397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Feb;34(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Feb 17;48(6):1410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jul;1804(7):1542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20417731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2011;5:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21266044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Dec 15;17(12):1748-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22530666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D764-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23203881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2013 Feb;9(2):119-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23242256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 May;1830(5):3217-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23036594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23249367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biochem. 2010;11:3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 18;36(11):3199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Feb 15;21(4):560-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15454409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol (Stevenage). 2006 Sep;153(5):338-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16986312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Sep 15;43(6):883-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17697933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Jul 31;581(19):3598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17659286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 Sep 1;68(4):972-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17554778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 5;47(5):1452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
</country>
</list>
<tree>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Mashamaite, Lefentse N" sort="Mashamaite, Lefentse N" uniqKey="Mashamaite L" first="Lefentse N" last="Mashamaite">Lefentse N. Mashamaite</name>
</noRegion>
<name sortKey="Pillay, Che S" sort="Pillay, Che S" uniqKey="Pillay C" first="Ché S" last="Pillay">Ché S. Pillay</name>
<name sortKey="Rohwer, Johann M" sort="Rohwer, Johann M" uniqKey="Rohwer J" first="Johann M" last="Rohwer">Johann M. Rohwer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000502 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000502 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25514238
   |texte=   The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent: implications for redox systems biology.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25514238" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020